Litho
  • Lithosphere
  • Abstract
  • Design Concept
  • Design Objectives
  • Smart Contracts & Decentralized Finance (DeFi)
  • Positioning
  • Lithosphere Architecture and Technology
  • Myriad Distributed Key Management (MDKM)
  • Threshold signature
  • Litho Coin
  • LAX – Algorithmic Stablecoin
  • Consensus Mechanism
  • Cross-Chain Integration
  • Cross-Chain Transactions
  • Deep Neural Networks (DNN)
  • LEP100 Multi-chain Token Standard
  • Validators
  • Linear-communication BFT Consensus
  • Myriad Distributed Key Management
  • LEP100 Token Standard
  • Why should your DeFi project use the LEP100 Token Standard?
  • LEP100 Token Features
  • Verification Nodes
  • Locked Account Generation Scheme
    • Introduction
    • General Nodes
    • Design Description
    • Scheme Generation
    • Advantages
      • Easy Integration and Efficient Data Storage
      • Smart Contract Token Transaction Anonymity
      • Fully Decentralized without Third-Party Participation
      • Secure and stable
      • One-Time Account System
      • Ring Signature Scheme
      • Cryptography Based Security Guarantee
      • Smart Contracts
        • Contract multi-triggering mechanism Diversity of triggering conditions
        • Enhancements and compatibility
        • Contract enclosed call
        • Contract development
        • Timing and trigger conditions
        • Rapid development and interface
        • To use multiple triggers to realize complex financial functions
  • Community operation plan
  • Project promotion method
  • A movement to Promote Blockchain Technology
  • The Standardization of Blockchain Interfaces Movement
  • Lithosphere Applications
  • Current Lithosphere Features
    • Lithosphere Products
    • Lithosphere Project Governance
    • Funding for the project
  • Roadmap
  • Conclusion
  • Disclaimer
  • Glossary
Powered by GitBook
On this page

Validators

In classical Byzantine fault-tolerant (BFT) algorithms, each node has the same weight. In Lithosphere, nodes have a non-negative amount of voting power, and nodes that have positive voting power are called validators. Validators participate in the consensus protocol by broadcasting cryptographic signatures, or votes, to agree upon the next block. Validators’ voting powers are determined at genesis or are changed deterministically by the blockchain, depending on the application. For example, in a proof-of-stake application such as the LithoSwap, the voting power may be determined by the amount of staking tokens bonded as collateral.

PreviousLEP100 Multi-chain Token StandardNextLinear-communication BFT Consensus

Last updated 3 years ago